A self-supervised feature selection algorithm for spectral embedding based on block HSIC lasso
نویسندگان
چکیده
Abstract With the rapid development of information technology, a large amount unlabeled high-dimensional data has been generated. To be able to better handle these data, we propose new self-supervised feature selection algorithm for spectral embedding based on block HSIC lasso (FSSBH). It innovatively applies theoretical approach scenarios importance assessment, and performs by learning with pseudo-label matrix formed embedding. The is compared five popular algorithms classification experiments seven publicly available datasets. results show superior performance FSSBH algorithm.
منابع مشابه
Fast SFFS-Based Algorithm for Feature Selection in Biomedical Datasets
Biomedical datasets usually include a large number of features relative to the number of samples. However, some data dimensions may be less relevant or even irrelevant to the output class. Selection of an optimal subset of features is critical, not only to reduce the processing cost but also to improve the classification results. To this end, this paper presents a hybrid method of filter and wr...
متن کاملSupervised and Semisupervised Clustering Based on Feature Selection Algorithm Process
In clustering process, semi-supervised learning is a tutorial of contrivance learning methods that make usage of both labeled and unlabeled data for training characteristically a trifling quantity of labeled data with a great quantity of unlabeled data. Semi-supervised learning cascades in the middle of unsupervised learning (without any labeled training data) and supervised learning (with comp...
متن کاملA Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems
Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...
متن کاملPartially Supervised Graph Embedding for Positive Unlabelled Feature Selection
Selecting discriminative features in positive unlabelled (PU) learning tasks is a challenging problem due to lack of negative class information. Traditional supervised and semi-supervised feature selection methods are not able to be applied directly in this scenario, and unsupervised feature selection algorithms are designed to handle unlabelled data while neglecting the available information f...
متن کاملSemi-supervised Feature Selection via Spectral Analysis
Feature selection is an important task in effective data mining. A new challenge to feature selection is the socalled “small labeled-sample problem” in which labeled data is small and unlabeled data is large. The paucity of labeled instances provides insufficient information about the structure of the target concept, and can cause supervised feature selection algorithms to fail. Unsupervised fe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2022
ISSN: ['1742-6588', '1742-6596']
DOI: https://doi.org/10.1088/1742-6596/2258/1/012026